0

25

50

Entite-time rupture in thin films driven by non-conservative effects

25

75

100

Hangjie Ji (Duke Math \rightarrow UCLA), <u>Thomas Witelski</u> (Duke Math)

75

• Self-similar rupture in unstable thin film equations for viscous flows

100

- Finite-time singularity formation in higher-order nonlinear PDEs
- <u>Non-conservative models</u>: physical motivation and mathematical generalizations
- Regimes for different classes of rupture dynamics
 asymptotically self-similar and non-self-similar solutions

H. Ji and T. Witelski, Finite-time thin film rupture driven by modified evaporative loss, Physica D 342 (2017)

Classical lubrication models for thin viscous films

<u>Fluid volume</u>: $0 \le x, y \le L$ $0 \le z \le h(x, y, t) < H$

- Navier-Stokes eqns: $\{ec{\mathbf{u}},p\}$ for viscous incompressible flow
- Stokes eqns: Low Reynolds number flow limit, ${\rm Re} \rightarrow 0$
- Slender limit aspect ratio $\delta = H/L
 ightarrow 0$: $\{ec{\mathrm{u}},p\}
 ightarrow h(x,y,t)$
- Boundary conditions at z=0 (substrate) and z=h(x,y,t) (free surface)

z = h(x, y, t)

The Reynolds lubrication equation

$$egin{aligned} h &= h(x,y,t): & ext{film height} \ \hline rac{\partial h}{\partial t} &=
abla \cdot (m
abla p) & m &= m(h): & ext{mobility coeff} \ p &= p[h]: & ext{dynamic pressure} \ \hline ec{\mathbf{J}} &= -m
abla p: & ext{mass flux} \end{aligned}$$

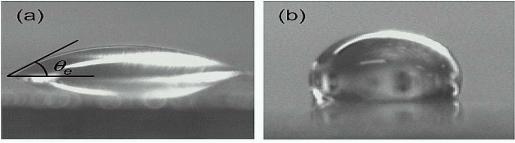
- $m(h) \sim h^n$: slippage effects, no-slip BC $m(h) = h^3$
- $p = \Pi(h) \nabla^2 h$: substrate wettability and surface tension

Representing substrate wettability: The disjoining pressure **Fluid-solid intermolecular forces** – physico-chemical properties of the solid and fluid. Wetting/non-wetting interactions described by a potential U(h)

$$p = \Pi(h) \equiv rac{dU}{dh} \longrightarrow \left[rac{\partial h}{\partial t} = rac{\partial}{\partial x} \left(h^3 rac{\partial}{\partial x} \left[\Pi(h) - rac{\partial^2 h}{\partial x^2}
ight]
ight)$$

All $\Pi = O(h^{-3})
ightarrow 0$ as h
ightarrow 0, weak influence for thicker films

- (a) Hydrophilic materials: $\Pi \sim -1/h^3$ Wetting behavior – diffusive spreading of drops $\forall t \geq 0$
- (b) <u>Hydrophobic materials</u>: $\Pi \sim +1/h^3$ Partially wetting – finite spreading of drops (finite support solns) (*Non-wetting – large contact angle, strong repulsion, non-slender regime...*)



Dewetting: Instability of uniform coatings of viscous fluids on solid surfaces, Undesirable for many applications (painting, ...). Rich and complex dynamics...

[de Gennes 1985, Oron et al 1997, de Gennes et al book 2004, Craster and Matar 2009, Bonn et al 2009]

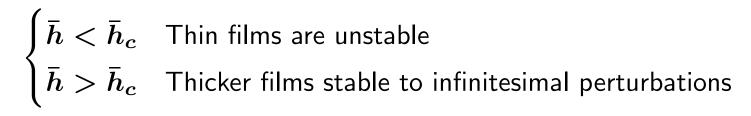
Simplest model for unstable films with hydrophobic effects

$$\Pi(h)=rac{1}{3h^3} \qquad \Longrightarrow \qquad rac{\partial h}{\partial t}=-rac{\partial}{\partial x}\left(h^{-1}rac{\partial h}{\partial x}+h^3rac{\partial^3 h}{\partial x^3}
ight)$$

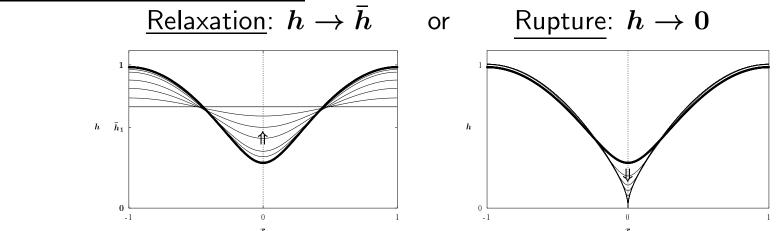
Linear instability of flat films: $h(x,t) \sim \bar{h} + \delta \cos(\frac{k\pi x}{L}) e^{\lambda t}$

$$\lambda_k = \frac{1}{h_c^2} \left(\frac{1}{\bar{h}} k^2 - \frac{\bar{h}^3}{h_c^2} k^4 \right) \qquad h_c = \sqrt{\frac{L}{\pi}} \quad \text{(critical thickness)}$$

<u>Bifurcation</u> mean-thickness $ar{h}$

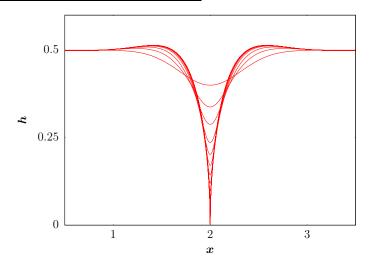


Bi-stable dynamics for $ar{h} > ar{h}_c$: IC $h_0(x) = ($ unstable equilibrium $) \pm \epsilon$



[Vrij 1970, Williams & Davis 1982, Laugesen & Pugh 2000]

Van der Waals driven thin film rupture: Finite-time rupture at position x_c



 $h(x_c,t)
ightarrow 0$ as $t
ightarrow t_c$

Scaling analysis of rupture in the PDE: let $au = t_c - t$

$$h = O(au^{1/5}) o 0$$
 $x = O(au^{2/5}) o 0$ as $au o 0$

<code>1st-kind self-similar dynamics</code> for formation of a localized singularity, $\Pi \to \infty$

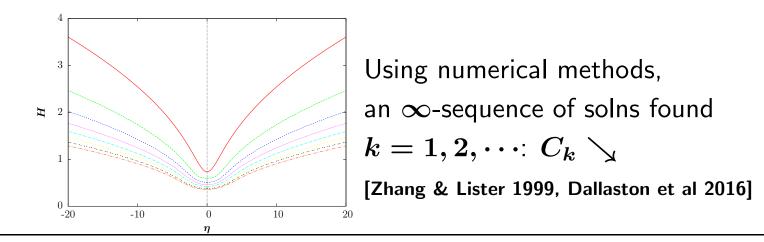
$$h(x,t) = au^{1/5} H(\eta) \qquad \eta = (x - x_c) / au^{2/5}$$

Similarity solution satisfies nonlinear ODE BVP

$$-\frac{1}{5}(H - 2\eta H') = -(H^{-1}H')' - (H^3H''')' \qquad H(|\eta| \to \infty) \sim C|\eta|^{1/2}$$

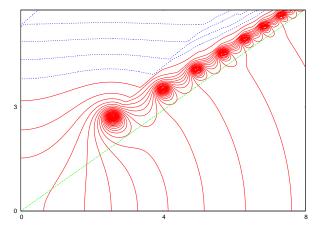
Van der Waals driven thin film rupture: solns of NL similarity ODE BVP

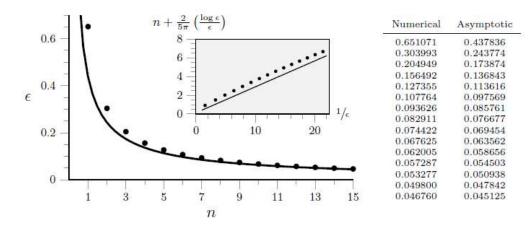
$$-\frac{1}{5}(H - 2\eta H') = -(H^{-1}H')' - (H^{3}H''')' \qquad H(|\eta| \to \infty) \sim C|\eta|^{1/2}$$



$$\frac{1}{5}(\phi - 2z\phi') - (\phi^{-1}\phi')' = \epsilon^2(\phi^3\phi''')' \qquad \phi(|z| \to \infty) \sim z^{1/2}$$

Analysis of Stokes phenomena from singularities of $\phi_0(z)$ in the complex plane





Continuation after rupture

- Solns with $\Pi = h^{-3}$ exist only up to first rupture, $0 \leq t < t_c$.
- To continue solns to later times, must regularize the singularity and establish a uniform lower bound on *h*.
- Can be accomplished via a modified $\Pi(h)$ with balancing conjoining/disjoining effects [Schwartz et al, Oron et al, ...]

$$\Pi(h) = \frac{1}{\epsilon} \left(\frac{\epsilon}{h}\right)^3 \left[1 - \frac{\epsilon}{h}\right]_{0}^{1}$$

–
$$h(x,t) \geq h_{\min} = O(\epsilon) > 0$$
 ("precursor layer")

- Ensures global existence of solns $orall t \geq 0$ [Bertozzi, Grün et al 2001]
- Widely-used, physically-motivated regularization
- Most studies of singularity formation and rupture in thin films are in the mass-conserving (non-volatile liquid) case
- Can lower-order non-conservative effects (e.g. evaporation) cause dramatic differences in the PDE dynamics?

Some non-conservative fourth-order PDE models

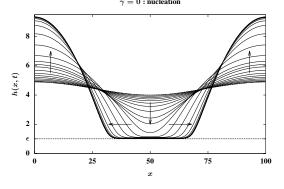
$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(\boxed{h^n} \frac{\partial}{\partial x} \left[\boxed{\Pi(h)} - \frac{\partial^2 h}{\partial x^2} \right] \right) - \boxed{J}$$

• [Burelbach et al 1998, Oron et al 2001] $(n=3, {
m full}\; \Pi, E_0 \lessgtr 0, K_0 > 0)$

$$J(h)=rac{E_0}{h+K_0}$$

• [Ajaev & Homsy 2001] $(n=3,\Pi=-1/h^3,\delta>0)$

$$J(h) = rac{E_0 - \delta(h_{xx} + h^{-3})}{h + K_0}$$



 $\gamma = -1$: condensation

50

75

100

h(x,t)

2

• [Laugesen & Pugh 2000]
$$(n,\Pi=h^m)$$

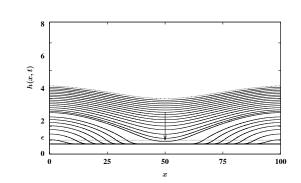
$$J(h) = \lambda h$$

• [Galaktionov 2010]
$$(n,\Pi=0)$$

$$J(h) = \lambda h^{
ho}$$

• [Lindsay et al 2014+] MEMS $(n=0,\Pi=h)$

$$J(h) = rac{\lambda}{h^2} \left(1 - rac{\epsilon}{h}
ight)$$



25

• Solid films, math biology, ...

If |J| is small, yields a separation of timescales in dynamics...

Rupture in a generalized non-conservative Reynolds equation

$$rac{\partial h}{\partial t} = rac{\partial}{\partial x} \left(h^n rac{\partial p}{\partial x}
ight) + rac{p}{h^m} \qquad p = - \left(rac{1}{h^4} + rac{\partial^2 h}{\partial x^2}
ight)$$

- <u>Pressure</u>: surface tension and dominant hydrophilic term for $\Pi(h)$ for h o 0 (should be stable and prevent rupture)
- <u>Non-conservative flux</u>: inspired by Ajaev's isothermal form, but with opposite sign (destabilizing). Params for physical form of evaporation are stabilizing.
- Generalized mobility coefficients h^n, h^m : inspired by [Bertozzi and Pugh 2000] they studied finite-time blow-up $(h \to \infty)$ in a long-wave unstable eqn

$$h_t = -(h^n h_{xxx})_x - (h^m h_x)_x$$

Destabilizing 2nd order term vs. regularizing 4th order term Helpful for tracing/separating competing influences

• Here: explore if some form of lower order non-conservative effects can overcome conservative terms and drive finite-time free surface rupture.

Obtain a bifurcation diagram for dynamics with (n, m).

Global properties: conservative vs. non-conservative effects

$$\frac{\partial h}{\partial t} = \frac{\partial}{\partial x} \left(h^n \frac{\partial p}{\partial x} \right) + \frac{p}{h^m} \qquad p = -\left(\frac{1}{h^4} + \frac{\partial^2 h}{\partial x^2} \right)$$

• Evolution of fluid mass, $\mathcal{M} = \int_0^L h \, dx$

$$\frac{d\mathcal{M}}{dt} = \int_0^L \frac{p}{h^m} \, dx = m \int_0^L \frac{h_x^2}{h^{m+1}} \, dx + \int_0^L \frac{\Pi(h)}{h^m} \, dx$$

• Evolution of energy,
$$\mathcal{E} = \int_0^L \frac{1}{2} \left(\frac{\partial h}{\partial x} \right)^2 + U(h) \, dx$$
 $\Pi(h) = \frac{dU}{dh}$

$$\frac{d\mathcal{E}}{dt} = -\int_0^L h^n \left(\frac{\partial p}{\partial x}\right)^2 dx + \int_0^L \frac{p^2}{h^m} dx$$

Not a monotone dissipating Lyapunov functional for this model (unlike the non-conservative/stabilizing [physical] case)

• Use local properties at $h_{\min}(t) = h(x_c, t) = \min_x h(x, t)$ to characterize the dynamics $\{\partial_{xx}h(x_c, t), \partial_th(x_c, t)\}$

1. Linear stability: perturbed flat films $h(x,t) = \bar{h}(t) + \delta e^{ikx}e^{\sigma(t)} + O(\delta^2)$

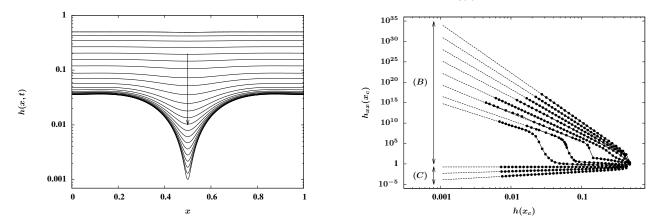
$$\left[rac{\partial h}{\partial t}=-rac{\partial}{\partial x}\left(h^nrac{\partial}{\partial x}\left[rac{1}{h^4}+rac{\partial^2 h}{\partial x^2}
ight]
ight)-rac{1}{h^m}\left[rac{1}{h^4}+rac{\partial^2 h}{\partial x^2}
ight]
ight.$$

$$O(1): \quad \frac{dh}{dt} = -\bar{h}^{-(4+m)}$$
$$O(\delta): \quad \frac{d\sigma}{dt} = \left(k^2\bar{h}^{-m} + (m+4)\bar{h}^{-(m+5)}\right) - \left(k^4\bar{h}^n + 4k^2\bar{h}^{n-5}\right)$$

<u>Flat film extinction</u> $\overline{h}(t) \rightarrow 0$: finite time (m > -5) vs. infinite time (exp/alg) <u>Growth of spatial perturbations</u>: $\frac{d\sigma}{dt} > 0$ if m > -4 and m + n > 0

$$egin{cases} h_{xx}(x_c,t)\sim C\exp\left(rac{4k^2ar{h}^{m+n}}{m+n}
ight)ar{h}^{-(m+4)}
ightarrow 0 & m+n<0\ h_{xx}(x_c,t)\sim Car{h}^{-(m+4)}
ightarrow\infty & m+n>0 \end{split}$$

For m near $m \geq -4$ perturbations grow slowly vs $rac{dar{h}}{dt}$ before eventual transition



2. Localized rupture at (x_c, t_c) : Observing finite-time self-similar solns?

$$h(x,t) \sim \tau^{\alpha} H(\eta)$$
 $\tau = t_c - t$ $\eta = \frac{x - x_c}{\tau^{\beta}}$

Scaling behavior for observables at $h_{\min}(t)$ for au o 0

$$egin{array}{rll} h_{\min}(t)&=& au^lpha H(0)\ \partial_t h_{\min}(t)&=&-lpha au^{lpha-1}H(0)\ \partial_{xx}h_{\min}(t)&=& au^{lpha-2eta}H''(0) \end{array}$$

yields

$$egin{aligned} |h_{\min,t}|&=lpha h_{\min}^{\mu} & \mu = 1 - rac{1}{lpha} \ h_{\min,xx} &= Ch_{\min}^{
u} &
u = 1 - rac{2eta}{lpha} \end{aligned}$$

- A compact way for characterizing the dynamics
- Power-law scaling relation \rightarrow self-similar behavior
- $u < 0 \implies$ curvature singularity at rupture, $h_{xx}
 ightarrow \infty$ as h
 ightarrow 0

The importance of numerical simulations...

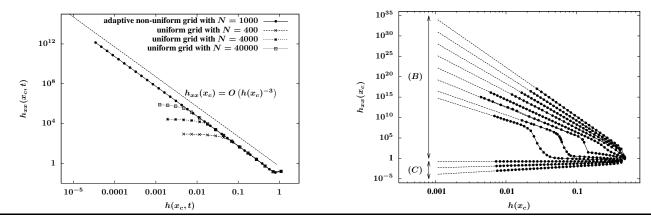
- In the absence of rigorous proofs, and expts, accurate numerical computations are essential for supporting conclusions from formal calculations
- Approach to singular behavior should be sustainable over a convincingly long dynamical regime to be distinguishable other transients
- Adaptive time-stepping and spatial regridding becomes necessary
- Splitting higher order PDE into first order systems is very useful

$$h_t = -(h^n(h^{-4} + h_{xx})_x)_x - h^{-m}(h^{-4} + h_{xx})_x)_x$$

becomes

$$h_t + (h^n q)_x + h^{-m} p = 0, \qquad q = p_x, \qquad p = h^{-4} + s_x, \qquad s = h_x.$$

Keller box scheme, second order accurate in space...



[H.B. Keller, A new difference scheme for parabolic problems, 1971]

2. Seeking self-similar solns: Substitute $h = \tau^{\alpha} H(x/\tau^{\beta})$ into PDE

$$rac{\partial h}{\partial t} = -rac{\partial}{\partial x} \left(h^n rac{\partial}{\partial x} \left[rac{1}{h^4} + rac{\partial^2 h}{\partial x^2}
ight]
ight) - rac{1}{h^m} \left[rac{1}{h^4} + rac{\partial^2 h}{\partial x^2}
ight]$$

becomes

$$\begin{aligned} \tau^{\alpha-1} \left(-\alpha H + \beta \eta H_{\eta} \right) &= - \left(-4\tau^{(n-4)\alpha-2\beta} \left(H^{n-5} H_{\eta} \right)_{\eta} \right. \\ &+ \tau^{(n+1)\alpha-4\beta} \left(H^{n} H_{\eta\eta\eta} \right)_{\eta} \right) \\ &- \left(\tau^{-(4+m)\alpha} \frac{1}{H^{4+m}} + \tau^{(1-m)\alpha-2\beta} \frac{H_{\eta\eta}}{H^{m}} \right) \end{aligned}$$

- Not possible to balance all terms at once (no exact similarity solns)
- For $\tau \to 0$ use method of dominant balance^a to determine distinguished limits giving ODEs for <u>asymptotically self-similar solns</u>
- Looks like lots of combinations possible, but there are only <u>two</u> <u>feasible distinguished limits</u> for finite-time rupture solns after eliminating ill-posed and spurious cases

^aBalance largest terms and confirm rest of terms are asymptotically smaller for au o 0

2(a) Second-order similarity solutions: For 0 < m + n < 5 and m > -4The dominant balance is

$$lpha H - eta \eta H_\eta + 4 \left(H^{n-5} H_\eta
ight)_\eta - rac{1}{H^{4+m}} = 0$$

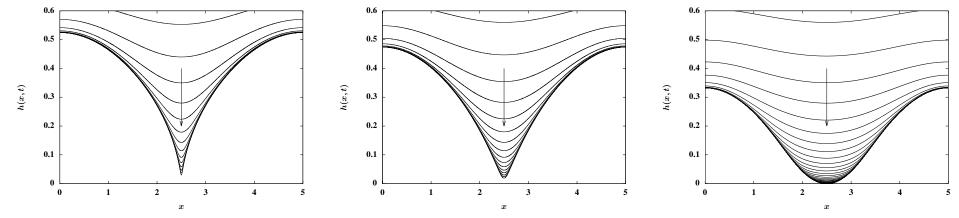
with scaling parameters

$$lpha=rac{1}{m+5}\qquad eta=rac{n+m}{2(m+5)}$$

Leading order reduced model: second-order diffusion eqn with singular absorption

$$rac{\partial h}{\partial t} = 4 rac{\partial}{\partial x} \left(h^{n-5} rac{\partial h}{\partial x}
ight) - rac{1}{h^{m+4}}$$

 $h_{\min,xx} = Ch_{\min}^{\nu}$ with $\nu = 1 - n - m$ $-4 < \nu < 1 \implies$ can have rupture without a singularity in the curvature!



Rupture with various $H = O(|\eta|^{lpha/eta})$ far-fields $(m = 0, n ext{ varies})$

2(b) Fourth-order similarity solutions: For m + n > 5 and m > -4The dominant balance is

$$-lpha H+eta\eta H_\eta+rac{H_{\eta\eta}}{H^m}+\left(H^nH_{\eta\eta\eta}
ight)_\eta=0$$

with scaling parameters

$$lpha = rac{1}{n+2m} \qquad eta = rac{n+m}{2(n+2m)}$$

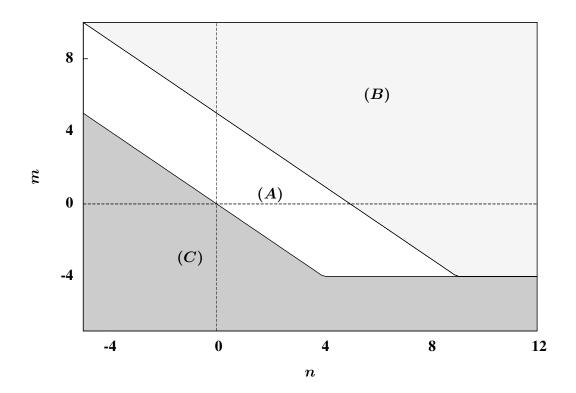
Leading order reduced model: non-conservative unstable 4th order

$$rac{\partial h}{\partial t} = -rac{\partial}{\partial x} \left(h^n rac{\partial^3 h}{\partial x^3}
ight) - rac{1}{h^m} rac{\partial^2 h}{\partial x^2},$$

 $h_{\min,xx} = C h_{\min}^{
u}$ with u = 1 - n - m $\implies \nu < -4$ always have a curvature singularity 0.5 0.5 0.4 0.4 h(x,t)h(x,t)0.3 0.3 0.1 10^{-6} 0.2 0.2 10^{-11} 0.1 0.1 2 0 1 3 4 5 1 2 3 5

<u>Notes</u>: (1) locally nearly-conservative, (2) usual discrete family of $H(\eta)$ solns (first one is stable), and (3) can rupture for n > 4 despite [Bernis & Friedman 1990]

Bifurcation diagram (v1.0)



(A) Localized second-order self-similar rupture

- (B) Localized fourth-order self-similar rupture
- (C) Uniform-film thinning

But.... numerical simulations suggest region (A) is not quite right....

$$h_t = 4(h^{n-5}h_x)_x - h^{-m-4}$$

n-5 < 0: fast diffusion case seems different than n-5 > 0: slow diffusion

<u>2(d)</u> Refined analysis: For Region (A) with n > 5Restart the local analysis for (x_c, t_c) without the self-similar assumption. Let $h(x, t) = ((m + 5)v(x, \tau))^{1/(m+5)}$ then PDE becomes

$$rac{\partial v}{\partial au} = \mathcal{N}[v]$$

Local expansion of v(x, au)

$$v(x,\tau) = v_0(\tau) + \frac{1}{2}v_2(\tau)X^2 + O(X^4)$$
 $X = x - x_c$

Solve coupled nonlinear ODEs for v_0, v_2 with $v_0
ightarrow 0$ as au
ightarrow 0

$$rac{dv_0}{d au} = 1 + E v_0^{2eta - 1} v_2 \qquad rac{dv_2}{d au} = F v_0^{2eta - 2} v_2^2$$

Non-self-similar rupture solutions

For n > 5

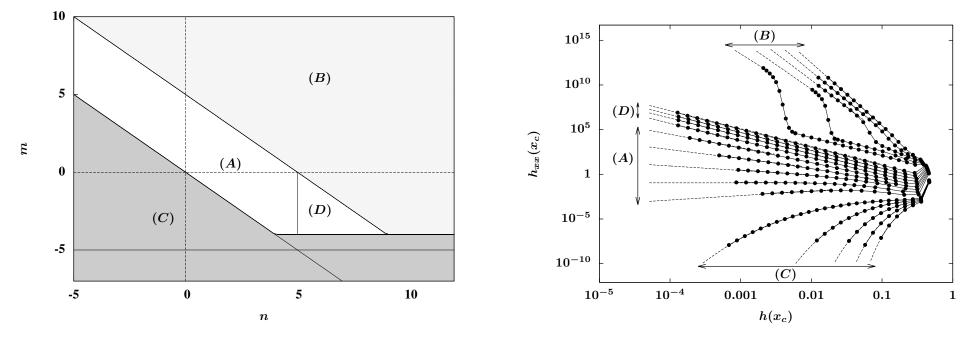
$$h(x,t) = \alpha^{-\alpha} (t_c - t)^{\alpha} \left(1 + D_2 \frac{(x - x_c)^2}{(t_c - t)} + D_0 (t_c - t)^{2\beta - 1} + \cdots \right)$$

For n=5

$$h(x,t) = \alpha^{-\alpha}(t_c - t)^{\alpha} \left(1 + \frac{\alpha E}{F|\ln(t_c - t)|} + \frac{\alpha(x - x_c)^2}{2F(t_c - t)|\ln(t_c - t)|} + \cdots \right)$$

[Guo, Pan, Ward, Touchdown... of a MEMS device, SIAM J. Appl. Math 2005]

Bifurcation diagram (refined)



 $\begin{array}{l} \displaystyle\frac{h_{\min,xx}=Ch_{\min}^{\nu} \text{ with } \nu=1-2\beta/\alpha}{\text{Series of numerical simulations with single IC, } m=-2 \text{ fixed, range of } n \text{ values} \\ \displaystyle \text{(A) Localized second-order self-similar rupture, } -2<\nu<1\\ \displaystyle \text{(B) Localized fourth-order self-similar rupture, } \nu<-2\\ \displaystyle \text{(C) Uniform-film thinning (finite-time or infinite time), } h_{\min,xx}\sim \exp \operatorname{decay} \\ \displaystyle \text{(D) Non-self-similar, but looks } ``\beta=\frac{1}{2}"-\operatorname{ish}, \nu\sim-2 \end{array}$