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e Self-similar rupture in unstable thin film equations for viscous flows
e Finite-time singularity formation in higher-order nonlinear PDEs

e Non-conservative models: physical motivation and mathematical

generalizations

e Regimes for different classes of rupture dynamics
— asymptotically self-similar and non-self-similar solutions
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Classical lubrication models for thin viscous films

z

z = h(xz,y,t)
z,y

Fluid volume: 0<xz,y<L 0<z<h(x,y,t) < H

e Navier-Stokes eqns: {u, p} for viscous incompressible flow
e Stokes eqns: Low Reynolds number flow limit, Re — 0
e Slender limit — aspect ratio 6 = H/L — 0: {d,p} — h(xz,y,t)

e Boundary conditions at z = 0 (substrate) and z = h(x,y,t) (free surface)

The Reynolds lubrication equation

h = h(x,y,t) : film height
m = m(h) : mobility coeff
oh _ V . (mVp)
ot P p = p[h] : dynamic pressure
J = —mVp: mass flux

e m(h) ~ h™: slippage effects, no-slip BC — m(h) = h3

e p = II(h) — V?h: substrate wettability and surface tension

[Oron, Davis, Bankoff 1997, Ockendon and Ockendon 1995, Craster and Matar 2009, ... ]



Representing substrate wettability: The disjoining pressure

Fluid-solid intermolecular forces — physico-chemical properties of the solid and

fluid. Wetting/non-wetting interactions described by a potential U (h)

dU dh & ([ ., D 92h
p=1II(h) = —— — —— = — (R |II(h) — —
dh ot ox ox Ox?

AllTI = O(h™3) — 0 as h — 0, weak influence for thicker films
(a) Hydrophilic materials: II ~ —1/h3

Wetting behavior — diffusive spreading of drops ¥Vt > 0
(b) Hydrophobic materials: IT ~ +1/h?

Partially wetting — finite spreading of drops (finite support solns)

(Non-wetting — large contact angle, strong repulsion, non-slender regime...)

Dewetting: Instability of uniform coatings of viscous fluids on solid surfaces,

Undesirable for many applications (painting, ...). Rich and complex dynamics...

[de Gennes 1985, Oron et al 1997, de Gennes et al book 2004, Craster and Matar 2009, Bonn et al 2009]



Simplest model for unstable films with hydrophobic effects

II(h) =

1 &h 8 (., _18h  38°h
38 E——am(” am“’ams)

Linear instability of flat films: h(x,t) ~ h + & cos("”’Tw)eM

1 (1,2, hR® 4 | L . .
A = hZ (ﬁk — h_gk ) h. = - (critical thickness)

Bifurcation mean-thickness h

h < h. Thin films are unstable
h > h. Thicker films stable to infinitesimal perturbations

Bi-stable dynamics for b > h.: IC ho(x) = (unstable equilibrium) % €
Relaxation: h — h or Rupture: h — 0

-1 0

—_

[Vrij 1970, Williams & Davis 1982, Laugesen & Pugh 2000]



Van der Waals driven thin film rupture: Finite-time rupture at position x.

0.5

0.25

h(xc,t) — 0 as t — t.

Scaling analysis of rupture in the PDE: let 7 = t. — ¢

h=0(%) >0 r=0(1T%°%) =0 asT — 0

1st-kind self-similar dynamics for formation of a localized singularity, IT — oo

h(z,t) =7°H(n) n=(z—x)/T*/°
Similarity solution satisfies nonlinear ODE BVP

~L(H — 2nH') = ~(H'H') — (H*H")  H(Jn|- 00) ~ Cln|*/2

[Zhang & Lister 1999, Witelski & Bernoff 2000] [Barenblatt 1996, Eggers & Fontelos 2009, 2015]



Van der Waals driven thin film rupture: solns of NL similarity ODE BVP

—+(H —2nH') = —(H'H') — (H’H"")’  H(|n|—= o) ~ C|n|"/*

4
i Using numerical methods,
JETR ~ | an oo-sequence of solns found

[Zhang & Lister 1999, Dallaston et al 2016]
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What determines the C}'s? Exponential asymptotics [Chapman et al 2013]
Let H(n) = €2/°¢(z) withn = e /32 and e = C? — 0

(0 —229") — (9719") = €2(¢°¢™)  ¢(|z|— 00) ~ 2'/7

Analysis of Stokes phenomena from singularities of ¢g(z) in the complex plane
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Continuation after rupture

e Solns with IT = h 3 exist only up to first rupture, 0 < t < t..

e To continue solns to later times, must regularize the singularity and
establish a uniform lower bound on h.

e Can be accomplished via a modified II(h) with balancing

conjoining/disjoining effects [Schwartz et al, Oron et al, ...]

1

= (3) -3 —

€

— h(x,t) > hmin = O(€) > 0 (“precursor layer”)
— Ensures global existence of solns V& > 0 [Bertozzi, Griin et al 2001]

— Widely-used, physically-motivated regularization

e Most studies of singularity formation and rupture in thin films are in the
mass-conserving (non-volatile liquid) case

e Can lower-order non-conservative effects (e.g. evaporation) cause dramatic
differences in the PDE dynamics?



Some non-conservative fourth-order PDE models

Oh 0 0 0%h

2 (T oy |- &2

ot ox ox Ox?

® [Burelbach et al 1998, Oron et al 2001] (n = 3, full II, Eyo <
J(h) = h T Ko

® [Ajaev & Homsy 2001] (n = 3,11 = —1/h®,8 > 0)

J(h) =

EO - 6(ha:a: _I_ h_3) ;0

|) -

0,K0>0)_' )

h + Ko
® [Laugesen & Pugh 2000] (n, IT = h™)

J(h) = Ah
® [Galaktionov 2010] (7, IT = 0)

J(h) = Ah*

e [Lindsay et al 20144+] MEMS (n = 0,11 = h)

=20

e Solid films, math biology, ...

If |J| is small, yields a separation of timescales in dynamics...



Rupture in a generalized non-conservative Reynolds equation

8h_8(h 8p)_|_ B (1+82h)
ot Oz ox P= h4 ox?

e Pressure: surface tension and dominant hydrophilic term for II(h) for h — 0

(should be stable and prevent rupture)

e Non-conservative flux: inspired by Ajaev's isothermal form, but with opposite

sign (destabilizing). Params for physical form of evaporation are stabilizing.

e Generalized mobility coefficients h™, h™: inspired by [Bertozzi and Pugh 2000] —
they studied finite-time blow-up (h — o0) in a long-wave unstable eqn

hi = —(h"hgze), — (K" hy)_,

Destabilizing 2nd order term vs. regularizing 4th order term
Helpful for tracing/separating competing influences

e Here: explore if some form of lower order non-conservative effects can
overcome conservative terms and drive finite-time free surface rupture.

Obtain a bifurcation diagram for dynamics with (1, m).



Global properties: conservative vs. non-conservative effects
oh 0 h(‘?p_l_ B 1_|_82h
ot oz \ oz) mm T \nt" Bs2
L
e Evolution of fluid mass, M = / h dx

L h2 L' TI(h)
——/ —dw—m/ d:z:—l—/ ——dx
0 hm—|—1 0 hm™m

L Oh 2
e Evolution of energy, £ = / % (8—) + U (h) dz II(h) =
0 xZr

d€ L op\? L p?
_:_/ hn(_P) dm+/ o
dt 0 ox 0 h™

Not a monotone dissipating Lyapunov functional for this model

dU
dh

(unlike the non-conservative/stabilizing [physical] case)

e Use local properties at hpmin(t) = h(xc,t) = ming h(x,t)
to characterize the dynamics {Ozzh(xc, t), Oth(xc, 1)}

[U. Thiele, Thin film evolution from evaporating ... to epitaxial growth, J. Phys. Condens. Matter 2010]



1. Linear stability: perturbed flat films h(x,t) = h(t) + de?*®e” () + O(§?)

Oh ) .0 [1 d*h 1 [1 d*h
ot = 0w (" o {m t 3:13]) ~ [h4 t 8:132]
0(1) : ‘;_;L _ _j-Gatm)

Flat film extinction h(t) — O: finite time (m > —5) vs. infinite time (exp/alg)
Growth of spatial perturbations: ‘Cll—‘z >0ifm>—-4andm+n>0

m-+n

hye(xe,t) ~ Cexp (4kzﬁm+n) h—(m+4) _ 0 m+n<O0
hpg (e, t) ~ Ch—(m+4) 5 o m-+n>0

For m near m > —4 perturbations grow slowly vs % before eventual transition
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2. Localized rupture at (x.,t.): Observing finite-time self-similar solns?

w_wc
e

h(x,t) ~ 7*H(n) T=1t.—1 n =

Scaling behavior for observables at hyin(t) for 7 — 0

hmin(t) = T*H(0)
Oshmin(t) = —ar*"1H(0)

yields

e A compact way for characterizing the dynamics
e Power-law scaling relation — self-similar behavior

e v < 0 = curvature singularity at rupture, hype — o0 as h — 0



The importance of numerical simulations...

e In the absence of rigorous proofs, and expts, accurate numerical computations

are essential for supporting conclusions from formal calculations

e Approach to singular behavior should be sustainable over a convincingly long

dynamical regime to be distinguishable other transients

e Adaptive time-stepping and spatial regridding becomes necessary

e Splitting higher order PDE into first order systems is very useful

hy = —(h"(h™* 4+ hys),), — R~ ™ (h™* + hyy)

becomes

hi + (h™q)s + h~™p = 0,

Keller box scheme, second order accurate in space...

qd = Px»

Db = h_4+3w7

1035 C
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[H.B. Keller, A new difference scheme for parabolic problems, 1971]



2. Seeking self-similar solns: Substitute h = 7H (x/7”) into PDE

Oh b, L0 [1 O%h 1 1 O%h
ot = om (" o {m t 8:::]) ~ {m t 8:1:2]
becomes
r* ' (—aH + BnH,) = — (—4T<”—4>°‘—23 (H"_5Hn)
n

4 plnto—dp (Hanm?)n>

— —(4+m)a 1 (1—m)a—28 H’r]'r]
(T HA+m™m +7 Hm™ )

e Not possible to balance all terms at once (no exact similarity solns)

e For 7 — 0 use method of dominant balance® to determine distinguished limits
giving ODEs for asymptotically self-similar solns

e Looks like lots of combinations possible, but there are only two
feasible distinguished limits for finite-time rupture solns after eliminating

ill-posed and spurious cases

@Balance largest terms and confirm rest of terms are asymptotically smaller for 7 — O



2(a) Second-order similarity solutions: For 0 < m +n < 5 and m > —4
The dominant balance is

_ 1
«H — nH, + 4 (H" 5H,,7)?7 — i =0
with scaling parameters
o — 1 8= n+m
m—+ 5 2(m + 5)

Leading order reduced model: second-order diffusion eqn with singular absorption

oh 8 ( _58h) 1
=4 (A5

ot Oz ox ) hmt4

—4 < v <1 == can have rupture without a singularity in the curvature!
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Rupture with various H = O(|n|®/P) far-fields (m = 0, n varies)



2(b) Fourth-order similarity solutions: For m +n > 5 and m > —4
The dominant balance is

H""I"”l
Hm

—aH + BnHy, + + (H"Hyny),, =0

with scaling parameters

1 n+m

c[:n—l—2fm '8:2(n—l—2m)

Leading order reduced model: non-conservative unstable 4th order

oh B 0 (h" 83h) 1 0%h
ot  Ox ox3 h™ Ox2’
hmin,ge = Ch, . withv=1—-—n—m

— v < —4 always have a curvature singularity
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Notes: (1) locally nearly-conservative, (2) usual discrete family of H(n) solns
(first one is stable), and (3) can rupture for n > 4 despite [Bernis & Friedman 1990]



Bifurcation diagram (v1.0)

(B)

(A) Localized second-order self-similar rupture

(B) Localized fourth-order self-similar rupture
(€)

Uniform-film thinning
But.... numerical simulations suggest region (A) is not quite right....
hy = 4(h" °hg)_ — h~ ™ *

n — 5 < 0: fast diffusion case seems different than
n — 5 > 0: slow diffusion



2(d) Refined analysis: For Region (A) with n > 5

Restart the local analysis for (x., t.) without the self-similar assumption.
Let h(x,t) = ((m + 5)v(x, 7))/ (™+5) then PDE becomes

ov
T — N[U]

Local expansion of v(x, T)
v(x, 7) = vo(T) + %Uz(T)Xz + O(X*) X =z

Solve coupled nonlinear ODEs for vg, vo with vg —+ 0asT — 0

dvo 28—1 dv2 23—2 2

— =1+ Ev V2 — = Fv v

dr 0 dr 0 2
Non-self-similar rupture solutions

Form > 5

(xz — xc)*
(te — 1)

h(xz,t) = a “(tc — t)° <1 + D, + Do(te — t)*P7 1 4 .. )

Form =5

I o o a(x — x:)?
h(z,t) = a "(t. =) (1 T . —0)] T 2F(t. — O)|In(te — )] T )

[Guo, Pan, Ward, Touchdown... of a MEMS device, SIAM J. Appl. Math 2005]



Bifurcation diagram (refined)
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(A) Localized second-order self-similar rupture, —2 < v < 1

(B) Localized fourth-order self-similar rupture, v < —2

(

C)
(D) Non-self-similar, but looks "3

-ish, v ~ —2

Uniform-film thinning (finite-time or infinite time), Amin,zz ~ exp decay




